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a b s t r a c t

Forecasting of sea-state characteristics, with warning time of a few hours, appears a necessity in

Operational Oceanography, linking sophisticated marine monitoring systems with forecasting modeling

tools. In this paper, instead of using conventional numerical models, a Takagi–Sugeno-rule-based Fuzzy

Inference System (FIS) was developed aiming at forecasting wave parameters based on the wind speed

and direction, and the lagged-wave characteristics. Initial and final antecedent fuzzy membership

functions were identified using the subtractive clustering method. The model was applied on the wind

and wave dataset recorded in years 2000–2006 by an oceanographic buoy deployed in the Aegean Sea.

The model showed perfect fit for the training period (2000–2005; 12,274 data points), and expanded its

hindcasting ability during 2006 (1044 data points), as the verification part of the series. Model results,

for a lead time of 3 h, showed good agreement between the predicted and the observed significant wave

height (RMSE=0.216) and zero-up-crossing period (RMSE=0.315). According to other model perfor-

mance criteria, the fuzzy model slightly underpredicted both wave characteristics (the linear regression

slope was 0.911 for wave height and 0.788 for wave period), and reduced its forecasting ability at higher

prediction intervals (+6 to +12 h). Overall, model results illustrated that the developed FIS could serve

as a valuable tool for the operational prediction of wave characteristics in Northern Aegean Sea, through

the utilization of the POSEIDON network.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction and background

Increased reliability in real-time wave prediction over the time
span of a few hours appears to be of crucial importance in coastal,
harbour and ocean engineering, allowing the safe and efficient
coastal and open-sea activities, as offshore drilling, naval opera-
tions, merchant vessel routing and nearshore construction
(Mandal and Prabaharan, 2006). As wave buoys deployment
became popular, providing real-time wave datasets and saving
long-term historic events, station-specific forecasts involved the
classical time-series approach, employing stochastic ARMA or
ARIMA models (Agrawal and Deo, 2002) or the development of
artificial neural networks (ANNs) (Deo and Kiran Kumar, 2000;
Deo et al., 2001; Makarynskyy, 2004; Rao and Mandal, 2005; Jain
and Deo, 2007). Current experience with ANNs showed that an
appropriately trained model could provide satisfactory results in
the deep open ocean (Deo and Jagdale, 2003), but less accurate
wave predictions in coastal or harbour areas, due to the increased
uncertainty introduced in the system (Tsai et al., 2002; Makar-
ynskyy, 2004). Similarly, wave parameter prediction following a
Takagi–Sugeno (TS) rule-based Fuzzy Inference System (FIS)

produced fairly accurate solutions of wave characteristics (Kaze-
minezhad et al., 2005; Özger and Sen, 2007). The use of the fuzzy
logic theory allows the user to include the unavoidable impreci-
sion and uncertainty in the data. Moreover, the representation of
the whole dataset by one model poses a disadvantage for classical
approaches and shows limited validity. In the case of fuzzy
models, fuzzy representations combine a set of linear indepen-
dent models, obtained through fuzzy rules, covering the whole
range of input signals through multiple partitions corresponding
to these weighted multiple linear models.

In this paper, the application of various dynamic TS fuzzy
inference systems to predict the impact of wind speed on the
deep-sea wave characteristics propagating along the North
Aegean Sea is established. The Takagi–Sugeno fuzzy systems have
been widely applied in environmental studies due to their
simplicity in the inference procedure and the possibility to
incorporate a general condition on the physical structure of the
system into the fuzzy system (Sylaios et al., 2008). The TS fuzzy
inference system produces a flexible, user friendly, fuzzy-rule-
based model, in which the user imports raw data of a series of
predictor variables and the developed system defines the fuzzy
sets according to a collection of ‘‘IF–THEN’’ rules; it then produces
an output highly comparable to the actual values observed in the
real world. Özger and Sen (2007) presented a dynamic FIS to
model the wave characteristics recorded from a NDBC buoy
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moored off California coast. They noted that the one-step ahead
significant wave height (HS(t+1)) and zero-up-crossing wave
period (T02(t+1)) predicted values, showed strong dependence
on the current wind speed (U(t)), but also on the previous state of
these parameters (HS(t�1), T02(t�1)). This is the dynamic part
of the model, as a high serial correlation between successive
HS and T02 values exists in long-term wave records. Such approach
implies that low wave heights are more likely to be followed by
low ones, and high wave heights by high ones (Özger and Sen,
2007). In this paper, this approach was followed and was further
expanded to determine the appropriate input variables and the
time-delay coordinates to reconstruct the phase space of the
observed dynamic system. Such approach led to the inclusion of
the wind direction as an input variable to the developed FIS
(Zamani et al., 2008).

2. Methods and dataset

2.1. The fuzzy inference system

A Fuzzy Model is a tool utilizing the information observed from
a complex phenomenon to derive a quantitative model. A fuzzy
system is a nonlinear mapping between inputs and outputs. The
mapping of inputs to outputs is in part characterized by a set of
‘‘IF–THEN’’ rules. A typical rule for the multiple-input–single-
output Takagi–Sugeno fuzzy system is of the form

Rr : IF ðx1 is Að1Þr ; x2 is Að2Þr ; . . . ; xp is AðpÞr THEN yr ¼ frðx1; x2; . . . ; xpÞ

ð1Þ

where Ar
(i) is the fuzzy set corresponding to a partitioned domain

of input variable xj in the rth IF–THEN rule, p the total number
of antecedents consisting the fuzzy model input variables, fr(.)
denotes the linear function of the p input variables, and yr the
consequent of the rth inference rule. It is assumed that there are
Rr (r=1, 2,y, n) rules in the above-mentioned form. The linear
functions fr are model consequents defined as linear functions of
the inputs by the following expression:

yr ¼ frðx1; x2; . . . ; xpÞ ¼ brð0Þþbrð1Þx1þbrð2Þx2þ � � � þbrðpÞxp ð2Þ

where [br(0), br(1), br(2),y, br(p)] is the parameter vector.
The crisp output of the fuzzy system may be determined by

y¼

PR
i ¼ 1 wiyiPR

i ¼ 1 wi

ð3Þ

where wi denotes the degree of fulfillment of the ith fuzzy rule,
defined using the minimum or the product conjunction operators.

The present fuzzy-rules-based systems for the hindcasting
of buoy wave characteristics were developed on the standard
Adaptive Neural Fuzzy Inference System (ANFIS), implemented in
Matlab 7.0 (Jang, 1993). The ANFIS approach defines a TS FIS
through a multi-layer feed-forward Neural Network approach, by
defining the following steps: the fuzzification of input values
through the defined membership functions leading to member-
ship values, the aggregation of membership values by the
application of a t-norm in the premise parts, the evaluation of
basis functions by normalizing the aggregated membership
values, the weighting of basis functions with linear consequent
functions and the final evaluation of output value by applying
Eq. (3). ANFIS supports two different methods for antecedent
membership function identification: grid partition (GP) (Jang,
1993) and subtractive clustering (SC) (Chiu, 1994). The grid
partition method divides the data into rectangular subspaces
based on the pre-defined number of the membership functions
and their types, producing rule base explosion. On the contrary,
the subtractive clustering method determines datapoint clusters

by measuring their potential in the feature space. This method has
the advantage of avoiding the explosion of the developed rule
base, a problem known as the ‘‘curse of dimensionality’’.

In the present work, initially the grid partition method was
used to initialize the membership functions. The parameters of
the membership functions were optimized on the identification
dataset by a neural network back-propagation learning algorithm,
while the consequent parameters were calculated by the linear
least squares method. Best model results were obtained when
initial partition was achieved through three Gaussian-type
membership functions for each antecedent variable. Additional
model runs were conducted using triangular, trapezoidal and bell-
shaped membership functions and membership functions num-
ber varying between 2 and 5, but with poorer results. In another
approach, the initial model parameters were formed using the
subtractive clustering method. The same procedure as for the grid
partition model was performed to optimize the parameters of the
membership functions and to compute the consequent para-
meters. In order to produce the optimal model, the parameters of
the subtracting clustering algorithm were varied between 0.5 and
2 for the quash factor, and 0.1 and 1.0 for the cluster radius and
accept and reject ratios, respectively.

2.2. Dataset description

The wind and wave dataset imported into FIS was obtained
by an oceanographic buoy located near Athos Peninsula (39.961N,
24.721E, water depth 220 m) (Fig. 1) in years 2000–2006.
Meteorological and wave data were recorded as part of
POSEIDON sea observatory network operated by the Institute of
Oceanography of the Hellenic Centre for Marine Research (HCMR)
(Soukissian et al., 1999, 2002). The recording interval of
measurements was 3 h and the sampling period of free surface
elevation was 17 min. The meteorological dataset involves the
time-series of gust wind speed (m/s), wind speed (m/s) and wind
direction (deg), recorded at 3 m height above sea level. The most
important recorded wave parameters are the spectral significant
wave height Hm0, the mean zero-up-crossing T02, and the mean
wave direction yW (Soukissian et al., 2002).

A complex wind regime is depicted with more frequent
(approximately 40%) NNE and NE winds (directions 30–601),

Fig. 1. North Aegean Sea and position of POSEIDON buoy for the monitoring of

meteorological and wave parameters during the years 2000–2006.
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followed by the SSE and SE winds (23%) with increased occurrence
during the period of September to December. Mean wind speed
4.7 m/s was observed, ranging between zero speed values and the
maximum value of 22.0 m/s. Wind speed median was computed
to 4.0 m/s. The more frequent waves produced (about 50%)
propagate from NNE to ENE directions with a maximum HS=5.50
m and T02=7.2 s, while SSE waves (about 12% frequency
of occurrence) produced maximum HS=5.1 m and T02=7.2 s. The
relation between the significant wave height HS and the mean
zero-up-crossing period T02 for the wave dataset showed a
satisfactory linear correlation (R2

HT=0.83). The temporal variability
of significant wave height and wave zero-up-crossing period
obtained from POSEIDON buoy are shown in Figs. 2 and 3.

2.3. Data pre-processing

The standard wind speed at 10 m reference level was obtained
following the US Army (2003) approximation:

U10 ¼UZ
10

z

� �1=7

ð4Þ

where U10 is wind velocity at 10 m height from the sea level and Uz

the wind velocity at elevation z (3 m). Furthermore, U10 wind
velocity was converted to the friction wind velocity U* with

U2
� ¼ CDU2

10 ð5Þ

where CD is the wind drag coefficient, with values as (Wu, 1982):

CD ¼
1:2875� 10�3 if U10o7:5 m=s

ð0:8þ0:065U10Þ � 10�3 if U10Z7:5 m=s

( )
ð6Þ

Finally, wind direction transformation was achieved using an
encoding method, allowing the encoded wind direction to range
between 0 and 1, as

Y¼
1� ðC=180Þ if 0orCr180o

ðC� 180Þ=180 if 180orCr360o

( )
ð7Þ

where C is the wind direction in degrees and Y the transformed
direction.

2.4. FIS input variables determination

The average mutual information (AMI) method was used
to determine the input variables imported in the fuzzy inference
system for each output, following Abebe and Price (2004)
and Zamani et al. (2008). Supposing two systems, A and B,
with measurements ai and bk, then the amount one learns in
bits about a measurement of ai from a measurement of bk is
given by the arguments of information theory (Gallager,
1968) as

IABðai; bkÞ ¼ log2
PABðai; bkÞ

PAðaiÞPBðbkÞ

� �
ð8Þ

where the probability of observing an out-of-the-set of all A is
PA(ai), and the probability of finding b in a measurement B is
PB(bk), and the joint probability of the measurement of a and b

is PAB(ai, bk). AMI expresses a measure of the mutual information
two variables share, thus a zero-AMI-value represents two
statistically independent variables, while a high AMI-score
represents two strongly related variables. Also, the average
mutual information between observations at time n and n+t is
then

IABðtÞ ¼
X
ai ;bk

PABðai; bkÞIABðai; bkÞ ð9Þ

Fraser and Swinney (1986) have suggested, as a prescription,
that it is necessary to choose that t where I(t) falls below a certain
limit. For the Athos POSEIDON dataset the AMI scores of wind–
wave, wave–wave, wind difference–wave, wind difference–wave
difference and wind–wave difference were computed to deter-
mine the input variables for the wave height and wave period FIS
(Fig. 4). It occurs that only the wind–wave and wave–wave
relations exhibit increased AMI values, with the higher values
obtained at zero lag for the wind–wave relation and at zero and
one lags for the wave–wave relation, for both wave characteristics

Fig. 2. Temporal variability of significant wave height (m), during (a) 2000–2003, (b) 2004–2005 (training dataset) and (c) 2006 (validation dataset).
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(significant wave height and the wave period). Thus the following
FIS models were built:

(a) for significant wave height:

HSðtþ1Þ ¼ f ðUðtÞ;HðtÞ;Hðt � 1Þ;YðtÞÞ

(b) for zero-up-crossing wave period:

T02ðtþ1Þ ¼ f ðUðtÞ; T02ðtÞ; T02ðt � 1Þ;YðtÞÞ

The above-proposed Fuzzy Inference Systems utilized the
Athos POSEIDON transformed dataset for the training and
validation procedures. The available data ensured the approx-
imate statistical similarity between both data sub-sets and the
occurrence of similar extreme events in both sub-sets. The time-
series of significant wave height (HS) and mean zero-up-crossing

period (T02) for the period 25/5/2000–31/12/2005 was considered
as the training dataset (12,274 data points), while the series from
1/1/2006 to 15/6/2006 was left for validation (1044 data points)
(Figs. 2 and 3).

2.5. FIS model development

The design and construction of a FIS appears to be a heuristic
process, involving several designer choices based on experience;
these include: choice of fuzzy predictor parameters, the type of
fuzzy model, the form of membership functions and the number
of rules established. In this study, two separate fuzzy inference
systems were developed to model the significant wave height HS

and the zero-up-crossing period T02. The ANFIS algorithm used
appears advantageous for large datasets, as those imported here,
since it maps locally using fuzzy rules, and thereby resulting in
reduced errors for the current training pattern and minimum
interference with the learning already made. Each model had a
four-input–one-output structure. All input variables were parti-
tioned into three fuzzy sets. ANFIS structure training was achieved
at 100 epochs before obtaining the resulting fuzzy inference
system with the modified (adjusted) parameters (i.e., premise
parameters—the membership function parameters, the conse-
quent parameters—the linear polynomial parameters and the
fuzzy-inference-system rules). Fig. 5 presents the modified
membership functions of the premise parameters. The structure
of the ‘‘IF–THEN’’ rules produced through subtractive clustering
for these two models is presented in Tables 1 and 2, respectively.

2.5. Model validation criteria

The validity of the output of FIS models was tested using
various statistical tests:

(a) The root mean square error (RMSE) and the scatter index (SI)
of the modeled and observed values of significant wave height
HS and zero-up-crossing period T02 were computed. RMSE was

Fig. 3. Temporal variability of zero-up-crossing period (sec), during (a) 2000–2003 (b) 2004–2005 (training dataset) and (c) 2006 (validation dataset).

Fig. 4. AMI-scores for various time-long periods.
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defined as

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 1

ðyi � yi

_
Þ
2

N

vuuut
ð10Þ

where yi is the observed time-series of HS and T02, yi

_
the

corresponding fuzzy model values and N the total number of
dataset. The parameter RMSE has to be as close to 0.0 as
possible for good prediction. The Scatter Index is defined as
the ratio of the RMSE normalised by the mean of the observed
values (Akratos et al., 2009), expressed as

SI¼
RMSE

average observed value
� 100 ð11Þ

SI has to be as close to 0.0 as possible.
(b) The validity could also be tested through scattergrams, which

are graphs of the predicted versus measured HS and T02 values.

Best match occurs when all points fall on a 1:1 slope line.
Deviation from that line is measured by fitting through the
points a straight regression line of the following equation

yi ¼ gŷi ð12Þ

If this slope g is less than 1.0, the FIS model underestimates
the observed data. If the slope g is greater than 1.0, the model
overestimates the observed values. Another parameter that
evaluates the accuracy of the agreement is the squared
correlation coefficient R2, which shows whether data scatter
are around the best-fit line. The closer R2 is to 1.0 the less the
points are scattered around the straight line. R2 is defined as:

R2 ¼
ssr

sst
ð13Þ

where ssr¼
PN

i ¼ 1ðŷi � yÞ2 and sst¼
PN

i ¼ 1ðyi � yÞ2, where y is
the mean observed value.

Fig. 5. Initial and final membership functions of wind speed and direction for significant wave height prediction.

Table 1
Fuzzy rules for the one-step-ahead significant wave height HS prediction.

Rules ‘IF’ part of the rule ‘THEN’ part of the rule

U(t) Y(t) HS(t) HS(t�1)

1 L L L L 2.6847�U(t)+0.4314�Y(t)+0.4471�HS(t)�0.0605�HS(t�1)�0.4328

2 M M M M 0.4893�U(t)+0.0232�Y(t)+1.1108�HS(t)�0.2249�HS(t�1)+0.0032

3 H H H H 0.9488�U(t)�0.1725�Y(t)+0.8899�HS(t)�0.1172�HS(t�1)+0.0318

here ‘L’, ‘M’ and ‘H’ denote the fuzzy set ‘low’, ‘medium’ and ‘high’, respectively.

Table 2
Fuzzy rules for the one-step-ahead mean zero-up-crossing period T02 prediction.

Rules ‘IF’ part of the rule ‘THEN’ part of the rule

U(t) Y(t) T02(t) T02(t�1)

1 L L L L 1.3555�U(t)�1.4344�Y(t)+0.5878�HS(t)+0.0724�HS(t�1)+2.2685

2 M M M M 1.0418�U(t)+0.1107�Y(t)+0.8793�HS(t)�0.0643�HS(t�1)+0.4501

3 H H H H 0.4337�U(t)�0.1089�Y(t)+0.8958�HS(t)+0.0139�HS(t�1)+0.1446

here ‘L’, ‘M’ and ‘H’ denote the fuzzy set ‘low’, ‘medium’ and ‘high’, respectively.

G. Sylaios et al. / Ocean Engineering 36 (2009) 1358–13651362
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(c) Finally, model’s performance under extreme wave height
conditions could be tested using the detection rate (DR) and
the false alarm rate (FAR) parameters. DR is defined as the
ratio between the number of modeled episodes, in which HS

exceeded the threshold value of 3.5 m, and the number of the
observed extreme wave episodes, while FAR as the ratio of
false alarms predicted by the model to the total number of
observed episodes.

3. Model results and discussion

With the procedure described above, two separate FIS were
developed to model the significant wave height HS and the zero-
up-crossing period T02 with a 3 h prediction interval, at Athos
POSEIDON buoy (North Aegean Sea). The model fits well the
2000–2005 calibration data and expands its ability to the
verification part of the series, during the year 2006. An illustration
of the good agreement between the predicted (3 h and 12 h lead)
and the observed significant wave height values for the testing
dataset is shown in the diagrams of Fig. 6. It may be noted that for
the 3 h and 12 h lead prediction, the rising and falling tendencies
of the observed wave heights were fairly reproduced by the fuzzy
model (as clearly shown in a random subset of 200 points),
leading to observations and model outputs sufficiently close to
each other (Fig. 6a, b). For the whole validation dataset (1044
points), it occurs that the slope of linear regression between
observed and modeled values appears less than unity, indicating
that the model slightly underpredicts HS (Fig. 6c, d).

Generally speaking, the results obtained from the developed
fuzzy models agree well with the measured data and coincide
with our expectation after AMI analysis. All performance criteria
applied on the whole validation set depicted the ability of the
model to predict HS satisfactorily at a 3-h-ahead prediction
interval (Table 3). Similar order of results was also achieved
using ANFIS by Mahjoobi et al. (2008). However, model’s accuracy
varies at different wave-height ranges, showing that the
prediction errors increase at increased wave heights.
Performance criteria for waves with HSo1.5 m show satisfactory
agreement (RMSE=0.149, R2=0.833, SI=26.03%, g=0.903) with
slight under-prediction, while for waves with HS43.0 m the FIS
model depicts lower accuracy (RMSE=0.613, R2=0.793, SI=18.84%,
g=1.040) with slight over-prediction. Moderate accuracy levels
(RMSE=0.413, R2=0.804, SI=22.31%, g=0.892) and under-
prediction were achieved at intermediate significant wave
heights (1.5rHSo3.0). However, overall the developed FIS
showed good ability to hindcast extreme significant wave events
(DR=0.77, FAR=0.08), in accordance to the findings of Zamani
et al. (2008), stating that the model with shear velocity as input
variable shows better behaviour in the region of extreme events.
Similarly to the results of Özger and Sen (2007), present model
runs when performed with higher prediction intervals (+6 h, +9 h
and +12 h), produced more unreliable results (Table 3).

A good agreement between observations and fuzzy model
results can be seen for the zero-up-crossing period, T02, for both
low- and medium-period waves, as well as for the peak-period
conditions (Fig. 7a, c). RMSE of 0.315, R2 0.832 and scatter index
8.83% were obtained, proving that for the one-step-ahead model
(+3 h lead time), a nearly perfect fit of the model with

Fig. 6. Model validation for significant wave height prediction, with comparison of observed and modeled 200-points sub-sample, for (a) 3 h lead and (b) 12 h lead, and

relation between observed and modeled data, for the whole testing dataset, for (c) 3 h lead and (d) 12 h lead.

G. Sylaios et al. / Ocean Engineering 36 (2009) 1358–1365 1363
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observations is established. The slope g 0.788 illustrates a slight
model under-estimation of zero-up-crossing period, especially at
peak-period values (45 s). Table 3 presents the performance
indices for the T02 model runs with various prediction intervals.
This table shows that RMSE and SI increase, while R2 decreases
with increase in the prediction interval. Indeed, as several
investigators proved, model’s prediction for the +12 h lead
period, shows lower accuracy in all statistical measures
(RMSE=0.420, SI=11.77%, R2=0.674), with under-prediction
(g=0.892) (Fig. 7b, d).

To determine the impact of meteorological input on model’s
predicting ability, the significant wave height and zero-up-cross-
ing period were forecasted based solely on three wave input
parameters collected at time steps t, (t�1) and (t�2). The

HS-prediction at lead time +3 h appeared significantly reliable
(RMSE=0.230, SI=28.5%, R2=0.901, g=0.762). Such HS-predictions
depicted performance statistical properties similar to those
obtained for the +6 h lead of the more complex wind–wave
model. However, the T02-wave model showed poorer predicting
ability (RMSE=0.425, SI=11.92%, R2=0.816, g=0.775), lower than
the +12 h time interval of the wind–wave model.

4. Conclusions

The present work dealt with the development of the TS fuzzy
inference system appropriate for the processing and forecasting of
wave height and period, based on previously observed wind
(speed and direction) and wave records. Model application was
performed on the meteorological and wave data collected by the
‘Mount Athos’ POSEIDON buoy, with warning times ranging
between 3 and 12 h. Results indicate that the proposed metho-
dology leads to the fast convergence of observed and predicted
series. Lower warning times produced better forecasts in both
wave characteristics, according to the established model perfor-
mance criteria. The satisfactory accuracy of model-wave predic-
tion obtained in all cases confirms that FIS models could
effectively be used for the offshore operational-wave forecasting
based on the continuous flow of wind and wave buoy observa-
tions. Model results illustrated that the developed FIS could serve
as a valuable tool for the operational prediction of wave
characteristics in Northern Aegean Sea, through the utilization
of the POSEIDON real time data.

Table 3
Performance criteria for significant wave height and zero-up-crossing period

prediction, using TS fuzzy models with different prediction intervals.

Hours HS T02

RMSE SI (%) g R2 RMSE SI (%) g R2

+ 3 h 0.216 26.76 0.911 0.913 0.315 8.83 0.788 0.834

+ 6 h 0.232 28.73 0.785 0.795 0.355 9.93 0.826 0.832

+ 9 h 0.260 32.18 0.725 0.790 0.365 9.95 0.879 0.756

+12 h 0.337 41.67 0.911 0.664 0.420 11.77 0.892 0.674

Fig. 7. Model validation for zero-up-crossing wave-period prediction, with comparison of observed and modeled 200-points sun-sample, for (a) 3 h lead and (b) 12 h lead,

and relation between observed and modeled data, for the whole testing dataset, for (c) 3 h lead and (d) 12 h lead.
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